

# Foundations in chemistry

## (Acids)

**Total mark – 20**

### Question: 1

1. A student carries out experiments using acids, bases and salts.

Calcium nitrate,  $\text{Ca}(\text{NO}_3)_2$ , is an example of a salt.

The student prepares a solution of calcium nitrate by reacting dilute nitric acid,  $\text{HNO}_3$ , with the base calcium hydroxide,  $\text{Ca}(\text{OH})_2$ .

(i) Why is calcium nitrate an example of a salt?

.....  
.....

[1]

(ii) Write the equation for the reaction between dilute nitric acid and calcium hydroxide. Include state symbols.

.....

[2]

(iii) Explain how the hydroxide ion in aqueous calcium hydroxide acts as a base when it neutralises dilute nitric acid.

.....  
.....  
.....

[1]

[Total 4 marks]

1. (i) The  $H^+$  ion in an (nitric) acid has been replaced by a metal ion  
OR by a  $Ca^{2+}$  ion ✓

**DO NOT ALLOW** it has been produced by the reaction of an acid and a base as this is stated in the question.

**IGNORE** references to replacement by  $NH_4^+$  ions or positive ions.

**ALLOW H OR** Hydrogen for  $H^+$ ;

**DO NOT ALLOW** Hydrogen atoms

**ALLOW Ca OR** Calcium for  $Ca^{2+}$ .

**DO NOT ALLOW** Calcium atoms

**ALLOW** 'metal' for 'metal ion'

1

(ii)  $2HNO_3(aq) + Ca(OH)_2(aq) \rightarrow Ca(NO_3)_2(aq) + 2H_2O(l)$

Formulae ✓

Balance AND states ✓

**ALLOW** multiples

**ALLOW (aq) OR (s)** for  $Ca(OH)_2$

2

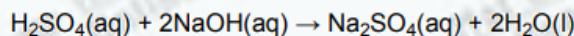
(iii) Accepts a **proton** OR accepts  $H^+$  ✓

**ALLOW**  $H^+ + OH^- \rightarrow H_2O$

**ALLOW**  $OH^-$  reacts with  $H^+$  OR  $OH^-$  takes  $H^+$

**ALLOW**  $OH^-$  'attracts'  $H^+$  if 'to form water' is seen

**DO NOT ALLOW**  $OH^-$  neutralises  $H^+$  ('neutralises' is in the question)


1

[4]

## Question: 2

2. (a) A student carries out a titration to find the concentration of some sulfuric acid.

The student finds that  $25.00 \text{ cm}^3$  of  $0.0880 \text{ mol dm}^{-3}$  aqueous sodium hydroxide,  $\text{NaOH}$ , is neutralised by  $17.60 \text{ cm}^3$  of dilute sulfuric acid,  $\text{H}_2\text{SO}_4$ .



(i) Calculate the amount, in moles, of  $\text{NaOH}$  used.

answer = ..... mol

[1]

(ii) Determine the amount, in moles, of  $\text{H}_2\text{SO}_4$  used.

answer = ..... mol

[1]

(iii) Calculate the concentration, in  $\text{mol dm}^{-3}$ , of the sulfuric acid.

answer = .....  $\text{mol dm}^{-3}$

[1]

(b) After carrying out the titration in (a), the student left the resulting solution to crystallise. White crystals were formed, with a formula of  $\text{Na}_2\text{SO}_4 \cdot x \text{ H}_2\text{O}$  and a molar mass of  $322.1 \text{ g mol}^{-1}$ .

(i) What term is given to the ' $x \text{ H}_2\text{O}$ ' part of the formula?

.....

[1]

(ii) Using the molar mass of the crystals, calculate the value of  $x$ .

answer = .....

[2]

[Total 6 marks]

2. (a) (i) Calculate correctly  $\frac{0.0880 \times 25.0}{1000} = 2.20 \times 10^{-3}$  mol

OR 0.00220 mol ✓

ALLOW 0.0022 OR  $2.2 \times 10^{-3}$  mol

1

(ii) Calculates correctly  $\frac{0.00220}{2} = 1.10 \times 10^{-3}$  mol

OR 0.00110 mol ✓

ALLOW 0.0011 OR  $1.1 \times 10^{-3}$  mol

ALLOW ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

1

(iii)  $\frac{0.00110 \times 1000}{17.60} = 0.0625 \text{ mol dm}^{-3}$

OR  $6.25 \times 10^{-2}$  mol dm<sup>-3</sup> ✓

ALLOW 0.063 OR  $6.3 \times 10^{-2}$  mol dm<sup>-3</sup>

ALLOW ECF for answer (ii)  $\times 1000/17.60$

OR

ECF from (i) for answer (i)/2  $\times 1000/17.60$  as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

1

(b) (i) (The number of) Water(s) of crystallisation ✓

IGNORE hydrated OR hydrous

1

(ii) 142.1 ✓

ALLOW 142

ALLOW  $M_r$  expressed as a sum

ALLOW ECF from incorrect  $M_r$  and  $x$  is calculated correctly

$$x = \frac{(322.1 - 142.1)}{18.0} = 10 \text{ ✓}$$

ALLOW ECF values of  $x$  from nearest whole number to calculator value

ALLOW 2 marks if final answer is 10 without any working

2

[6]

## Question: 3

3. Ammonium compounds such as ammonium sulfate,  $(\text{NH}_4)_2\text{SO}_4$ , can be used as fertilisers.

(i) Write a balanced equation to show how ammonium sulfate could be formed by the reaction between aqueous ammonia and sulfuric acid.

.....

[1]

(ii) Ammonium sulfate is an example of a salt formed when an acid is neutralised by a base.

Explain what is meant by the term *salt*.

.....

[1]

(iii) Why is ammonia acting as a base in this neutralisation?

.....

[1]

(iv) What is the relative formula mass of  $(\text{NH}_4)_2\text{SO}_4$ ?

Give your answer to **one** decimal place.

.....

[1]

[Total 4 marks]

3. (i)  $2\text{NH}_3 + \text{H}_2\text{SO}_4 \rightarrow (\text{NH}_4)_2\text{SO}_4 \checkmark$

*ALLOW*  $2\text{NH}_4\text{OH} + \text{H}_2\text{SO}_4 \rightarrow (\text{NH}_4)_2\text{SO}_4 + 2\text{H}_2\text{O}$

*ALLOW*  $\text{NH}_3 + \text{H}^+ \rightarrow \text{NH}_4^+$

*ALLOW* any correct multiple

*IGNORE* state symbols

1

(ii) when the  $\text{H}^+$  in an acid is replaced by a metal ion **OR** an ammonium ion **OR** a + ion ✓

*ALLOW*  $\text{H}$  for  $\text{H}^+$ ;

*ALLOW* 'metal' for 'metal ion'

*i.e.:*  $\text{H}$  in an acid can be replaced by a metal

1

(iii) accepts a proton **OR** accepts  $H^+$  ✓

*ALLOW donates a lone pair*

*ALLOW removes  $H^+$*

*ALLOW forms  $OH^-$  ions*

1

(iv) 132.1 ✓

*IGNORE units*

**NO OTHER ACCEPTABLE ANSWER**

1

[4]

## Question: 4

4. Epsom salts can be used as bath salts to help relieve aches and pains.

Epsom salts are crystals of hydrated magnesium sulfate,  $\text{MgSO}_4 \cdot x\text{H}_2\text{O}$ .

A sample of Epsom salts was heated to remove the water. 1.57 g of water was removed leaving behind 1.51 g of anhydrous  $\text{MgSO}_4$ .

(i) Calculate the amount, in mol, of anhydrous  $\text{MgSO}_4$  formed.

$$\text{amount} = \dots \text{mol}$$

[2]

(ii) Calculate the amount, in mol, of  $\text{H}_2\text{O}$  removed.

$$\text{amount} = \dots \text{mol}$$

[1]

(iii) Calculate the value of  $x$  in  $\text{MgSO}_4 \cdot x\text{H}_2\text{O}$ .

$$x = \dots$$

[1]

[Total 4 marks]

4. (i)  $M(\text{MgSO}_4) = 120.4 \text{ OR } 120 \text{ (g mol}^{-1}\text{)} \checkmark$

$$\text{mol MgSO}_4 = \frac{1.51}{120.4} = 0.0125 \text{ mol } \checkmark$$

*ALLOW 0.013 up to calculator value of 0.012541528 correctly rounded (from  $M = 120.4 \text{ g mol}^{-1}$ )*

*ALLOW 0.013 up to calculator value of 0.012583333 correctly rounded (from  $M = 120 \text{ g mol}^{-1}$ )*

*ALLOW ecf from incorrect  $M$  i.e.  $1.51 \div M$*

2

(ii)  $\frac{1.57}{18.0} = 0.0872(2) \text{ (mol) } \checkmark$

*ALLOW 0.09 up to calculator value of 0.08722222*

1

(iii)  $\times = 7 \checkmark$

*ALLOW ecf i.e. answer to (ii)  $\div$  answer to (i)*

*ALLOW correctly calculated answer from 1 significant figure up to calculator value, ie,  $\times$  does not have to be a whole number. Likely response = 6.95  $\checkmark$*

1

[4]

## Question: 5

5. Calcium oxide reacts with water and with nitric acid.

State the formula of the calcium compound formed when:

(i) calcium oxide reacts with water, .....

[1]

(ii) calcium oxide reacts with nitric acid. ....

[1]

[Total 2 marks]

5. (i)  $\text{Ca}(\text{OH})_2$  ✓

*IGNORE charges, even if wrong*

1

(ii)  $\text{Ca}(\text{NO}_3)_2$  ✓

*IGNORE charges, even if wrong*

1