

Atoms, Isotopes and Relative Atomic Masses

Total mark - 17

Question: 1

1. Isotopes of europium have differences and similarities.

(i) In terms of protons, neutrons and electrons, how is an atom of ^{151}Eu **different** from an atom of ^{153}Eu ?

.....
.....

[1]

(ii) In terms of protons, neutrons and electrons, how is an atom of ^{151}Eu **similar** to an atom of ^{153}Eu ?

.....
.....

[1]

[Total 2 marks]

1. (i) ^{153}Eu has (2) more neutrons

OR

^{153}Eu has 90 neutrons **AND** ^{151}Eu has 88 neutrons ✓

ALLOW There are a different number of neutrons

IGNORE Correct references to protons / electrons

DO NOT ALLOW Incorrect references to protons / electrons

1

(ii) (It has the) same number of protons **AND** electrons

OR

Both have 63 protons and 63 electrons ✓

ALLOW Same number of protons **AND** same electron configuration

DO NOT ALLOW 'Same number of protons' without reference to electrons (and vice versa)

1

[2]

Question: 2

2. Europium, atomic number 63, is used in some television screens to highlight colours. A chemist analysed a sample of europium using mass spectrometry. The results are shown in the table below.

isotope	relative isotopic mass	abundance (%)
^{151}Eu	151.0	47.77
^{153}Eu	153.0	52.23

(a) Define the term *relative isotopic mass*.

.....
.....
.....

[2]

(b) Using the table above, calculate the relative atomic mass of the europium sample.
Give your answer to **two** decimal places.

answer =

[2]

[Total 4 marks]

2. (a) **Mass of the isotope** compared to 1/12th
OR
mass of the atom compared to 1/12th ✓
(the mass of a) carbon-12 **OR** ^{12}C (atom) ✓

IGNORE Reference to average **OR** weighted mean
(i.e. correct definition of relative atomic mass will score both marks)

ALLOW mass of a **mole** of the isotope/atom with 1/12th the mass of a **mole** **OR** 12 g of carbon-12 for two marks.

ALLOW 2 marks for:

'Mass of the isotope **OR** mass of the atom compared to ^{12}C atom given a mass of 12.0'
i.e. 'given a mass of 12' **OR** C12 is 12 communicates the same idea as 1/12th.'

ALLOW 12C **OR** C12

ALLOW 2 marks for:

$$\frac{\text{mass of the isotope}}{\text{mass of 1/12th mass of carbon-12}}$$

i.e. fraction is equivalent to 'compared to'

ALLOW 1 mark for a mix of mass of atom and mass of mole of atoms, i.e. 'mass of the isotope/mass of an atom compared with 1/12th the mass of a **mole** **OR** 12 g of carbon-12.'

DO NOT ALLOW mass of 'ions' **OR** mass of element

2

(b)
$$\frac{(151 \times 47.77) + (153 \times 52.23)}{100}$$

OR

72.1327 + 79.9119

OR

152.0446 (calculator value) ✓

$A_r = 152.04$ ✓

ALLOW Correct answer for two marks

ALLOW One mark for ECF from transcription error in first sum provided final answer is to 2 decimal points and is to between 151 and 153 and is a correct calculation of the transcription

2

[4]

Question: 3

3. Carbon occurs in a wide range of compounds and is essential to living systems.

Two isotopes of carbon are ^{12}C and ^{13}C .

(i) State what is meant by the term *isotopes*.

.....

[1]

(ii) Isotopes of carbon have the same chemical properties.

Explain why.

.....

[1]

3. (i) (atoms of the) same element **OR** same atomic no.
OR no. of protons

AND

with different numbers of neutrons **OR** different masses ✓

IGNORE 'same number of electrons'

DO NOT ALLOW 'different numbers of electrons'

DO NOT ALLOW 'different relative atomic masses'

*DO NOT ALLOW 'elements with different numbers of neutrons' **without** mention of same protons **OR** same atomic number*

1

(ii) **same** (number of) **electrons** (in the outer shell)

OR

same **electron** configuration **OR** structure ✓

DO NOT ALLOW different number of protons

IGNORE 'same number of protons'

*IGNORE 'they are both carbon' **OR** 'they are both the same element'*

1

Question: 4

4. The Group 2 element magnesium was first isolated by Sir Humphry Davy in 1808.

Magnesium has three stable isotopes, which are ^{24}Mg , ^{25}Mg and ^{26}Mg .

(i) Complete the table below to show the atomic structures of ^{24}Mg and ^{25}Mg .

	protons	neutrons	electrons
^{24}Mg			
^{25}Mg			

[2]

(ii) A sample of magnesium contained ^{24}Mg : 78.60%; ^{25}Mg : 10.11%; ^{26}Mg : 11.29%.

Calculate the relative atomic mass of this sample of Mg.

Give your answer to **four** significant figures.

answer =

[2]

4. (i)

	protons	neutrons	electrons
^{24}Mg	12	12	12
^{25}Mg	12	13	12

^{24}Mg line correct ✓

^{25}Mg line correct ✓

mark by row

2

(ii)
$$\frac{24 \times 78.60 + 25 \times 10.11 + 26 \times 11.29}{100}$$

OR $18.8640 + 2.5275 + 2.9354$

OR 24.3269 ✓

$A_r = 24.33$ (to 4 sig figs) ✓

ALLOW two marks for $A_r = 24.33$ with no working out

ALLOW one mark for ecf from incorrect sum provided final answer is between 24 and 26 and is to 4 significant figures, e.g. 24.3235 ✗ gives ecf of 24.32 ✓

2

Question: 5

5. The Group 7 element bromine was discovered by Balard in 1826. Bromine gets its name from the Greek *bromos* meaning stench.

Bromine consists of a mixture of two isotopes, ^{79}Br and ^{81}Br .

(i) What is meant by the term *isotopes*?

.....
.....

[1]

(ii) Complete the table below to show the atomic structures of the bromine isotopes.

	protons	neutrons	electrons
^{79}Br			
^{81}Br			

[2]

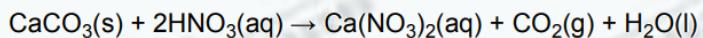
(iii) Write the full electronic configuration of a bromine atom.

$1s^2$

[1]

[Total 4 marks]

5.	(i) atoms of the same element with different numbers of neutrons/different masses (1)	1
	(ii) ^{79}Br 35 protons, 44 neutrons, 35 electrons (1)	2
	^{81}Br 35 protons, 46 neutrons, 35 electrons (1)	
	(iii) $(1s^2)2s^22p^63s^23p^63d^{10}4s^24p^5$ (1)	1


Question: 6

6. Calcium and its compounds, have properties typical of Group 2 in the Periodic Table.

Calcium carbonate, CaCO_3 , reacts with acids such as nitric acid.

A student neutralised 2.68 g of CaCO_3 with 2.50 mol dm^{-3} nitric acid, HNO_3 .

The equation for this reaction is shown below.

The student left the solution of calcium nitrate formed to crystallise. Crystals of hydrated calcium nitrate formed containing 30.50% of H_2O , by mass.

Calculate the formula of the hydrated calcium nitrate.

[Total 3 marks]

6. Molar mass of anhydrous calcium nitrate = 164.1 g mol^{-1} (1)
 Ratio $\text{Ca}(\text{NO}_3)_2 : \text{H}_2\text{O} = 69.50/164.1 : 30.50/18$
 or 0.4235 : 1.694 or 1 : 4 (1)
 Formula = $\text{Ca}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ (1)

[3]