

Chemical Bonds - Ionic, Covalent and Metallic

Total mark – 16

Question: 1

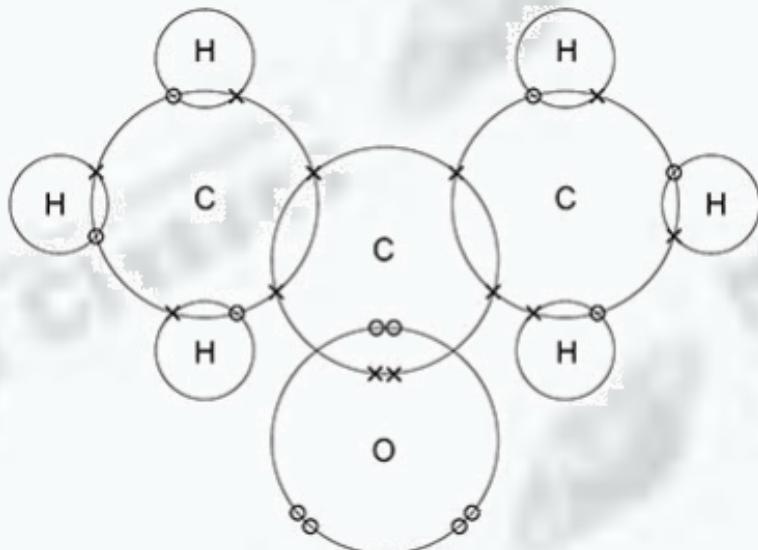
This question is about carbon and its compounds.

Fullerenes are molecules of carbon atoms.

The first fullerene to be discovered was Buckminsterfullerene (C_{60}).

(a) What shape is a Buckminsterfullerene molecule?

(1)

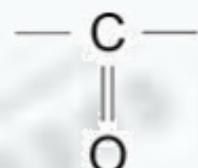

(b) Give **one** use of a fullerene.

(1)

Propanone is a compound of carbon, hydrogen and oxygen.

Figure 1 shows the dot and cross for a propanone molecule.

Figure 1



(c) Complete **Figure 2** to show a propanone molecule.

Use a line to represent each single bond.

Use **Figure 1**.

Figure 2

(1)

(d) Determine the molecular formula of propanone.

Use **Figure 1**.

Molecular formula = _____

(1)

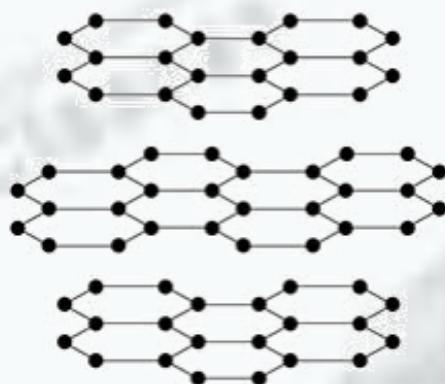
(e) Propanone is a liquid with a low boiling point.

Why does propanone have a low boiling point?

Tick (**✓**) **one** box.

The covalent bonds are strong.

The covalent bonds are weak.


The intermolecular forces are strong.

The intermolecular forces are weak.

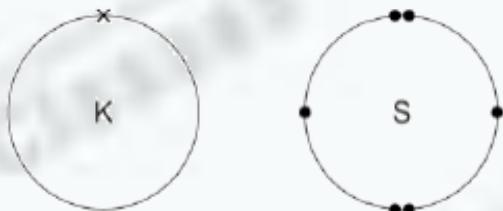
(1)

(f) **Figure 3** represents the structure of graphite.

Figure 3

Explain why graphite is:

- a good electrical conductor
- soft and slippery.


You should answer in terms of structure and bonding.

(6)

Question: 2

Figure 1 shows the outer electrons in an atom of the Group 1 element potassium and in an atom of the Group 6 element sulfur.

Figure 1

(a) Potassium forms an ionic compound with sulfur.

Describe what happens when **two** atoms of potassium react with **one** atom of sulfur.

Give your answer in terms of electron transfer.

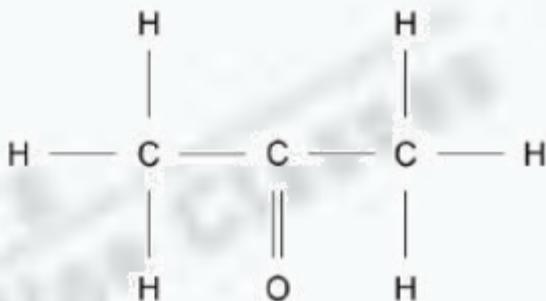
Give the formulae of the ions formed.

(5)

Mark Scheme

(a) spherical

*allow ball-shaped
ignore round / circular*


1

(b) any **one** from:

- drug delivery (round the body)
- hydrogen storage
- anti-oxidants
- reduction of bacterial growth
- catalysts
- (cylindrical fullerenes for) strengthening materials
- (spherical fullerenes for) lubricants

1

(c)

1

(d) $\text{C}_3\text{H}_6\text{O}$

*allow \text{CH}_3\text{COCH}_3
allow elements in any order*

1

(f) **Level 3:** Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.

5–6

Level 2: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.

3–4

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

1–2

No relevant content

0

Indicative content

- bonds are covalent
- giant / macromolecular structure
- three (covalent) bonds per carbon atom
or
only three electrons per carbon atom used in (covalent) bonds
- so one electron per carbon atom (is delocalised)
- these delocalised electrons
- can move through the structure
- carrying (electrical) charge
- so graphite conducts electricity
- layered structure
- of (interlocking) hexagonal rings
- with weak (intermolecular) forces between layers
or
no (covalent) bonds between layers
- so the layers can slide over each other
- so graphite is soft and slippery

[11]

Question-2

(a) electrons transferred from potassium to sulfur

1

two potassium atoms each lose one electron

1

forming K^+ / 1+ ions

1

sulfur atoms gain 2 electrons

1

forming S^{2-} / 2- ions

1