

Waves, Motion and Forces

Total mark - 15

Question: 1

6 Starter pistols are used in athletics events to start races. A starter pistol makes a loud bang and produces a puff of smoke.

Figure 10 shows two people who investigated the speed of sound using a starter pistol and a stopwatch.

Figure 10

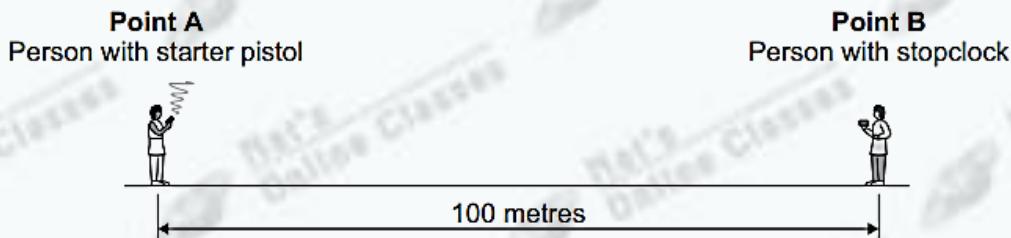


Figure 10 is not drawn to scale.

6 (a) The person at **Point B** sees the puff of smoke before hearing the bang from the starter pistol.

What does this tell you about the speed of sound compared with the speed of light?

[1 mark]

6 (b) The frequency of the sound wave produced by the pistol was 800 Hz

The wavelength of the sound wave was 0.42 m

Calculate the speed of the sound wave.

Use the correct equation from the Physics Equations Sheet.

Choose the correct unit.

m/s^2

m/s

m^2/s

[3 marks]

Speed = _____ unit _____

6 (c) Complete **Table 1** to show the properties of the sound wave at **Point B** compared with the sound wave at **Point A**. [3 marks]

Tick (✓) **one** box for each property comparison.

Table 1

Properties of the sound wave at Point B compared to Point A	greater than	less than	the same as
amplitude			
frequency			
speed			

6 (d) A sound wave can be reflected. What name is given to a reflected sound wave?

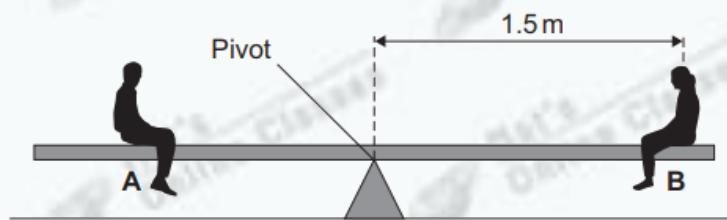
[1 mark]

6 (e) Which **two** of these statements are true for sound waves?

[2 marks]

Tick (✓) **two** properties.

	Tick (✓)
Sound waves can travel through a vacuum.	
Sound waves are transverse waves.	
Sound waves are longitudinal waves.	
Sound waves transfer energy.	
Sound waves are electromagnetic waves.	


Question	Answers	Extra information	Mark	AO / Spec. Ref.
6(a)	(the speed of sound is) lower	accept converse	1	AO2 1.5
6(b)	336 m/s	accept 340 allow 1 mark for correct substitution ie 800×0.42 provided no subsequent step	2 1	AO1 AO2 1.5.1j
6(c)	less than same as same as		1 1 1	AO1 1.5.3b
6(d)	echo		1	AO1 1.5.3c
6(e)	Sound waves are longitudinal waves. Sound waves transfer energy.		1 1	AO1 1.5 1.1.3c
Total			10	

Question: 2

1 Two children visit a playground.

1 (a) Figure 1 shows the two children, A and B, sitting on a see-saw.

Figure 1

1 (a) (i) The weight of child A and the weight of child B each create a moment about the pivot.

What is meant by 'the moment of a force'?

[1 mark]

Tick (✓) one box.

the direction of the force

the turning effect of the force

the size of the force

1 (a) (ii) The see-saw is balanced.

Use the correct answer from the box to complete the sentence.

[1 mark]

smaller than

equal to

greater than

The size of the moment of child A is _____ the size of the moment of child B.

1 (a) (iii) Child B has a weight of 400 N and is sitting 1.5 m from the pivot.

Calculate the moment of child B about the pivot.

Use the correct equation from the Physics Equations Sheet.

Choose the correct unit.

[3 marks]

kilogram

newton-metre

newton per metre

Moment = _____ unit _____

1(a)(i)	The turning effect of the force		1	AO1 3.2.2a
1(a)(ii)	equal to		1	AO1 3.3.2c
1(a)(iii)	600 newton-metre / N m	allow 1 mark for a correct substitution ie 400×1.5 provided no subsequent step do not accept n m	2 1	AO2 AO1 3.2.2b