

Basic Concepts

Total mark – 21

Question 1

1. Some of the hydrocarbons in kerosene have the formula $C_{10}H_{22}$.

(i) What is the name of the straight chain hydrocarbon with the formula $C_{10}H_{22}$?

.....

[1]

(ii) Draw the skeletal formula of one branched chain isomer with the formula $C_{10}H_{22}$.

.....
.....
.....
.....
.....

[2]

(iii) Explain why the straight chain isomer of $C_{10}H_{22}$ has a higher boiling point than any of its branched chain structural isomers.

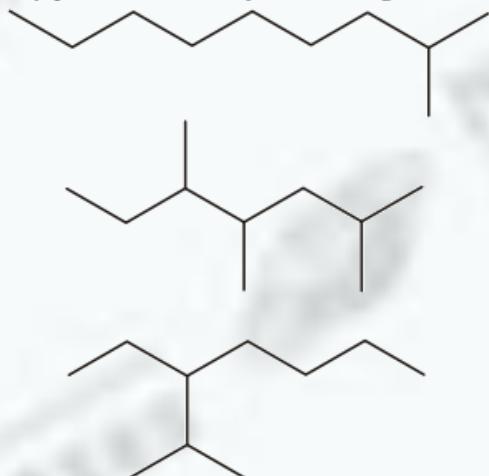
.....
.....

[1]

[Total 5 marks]

1. (i) Decane ✓

DO NOT ALLOW deceane


1

(ii) Skeletal formula of branched C₁₀H₂₂ ✓

Formula must be skeletal

AND must not include any symbol, e.g. CH₃

Any possible skeletal formulae e.g.

1

(iii) Decane has more surface contact

OR branched chains have less surface contact ✓

Both answers need to be comparisons

Assume 'it' refers to decane

IGNORE surface area

ALLOW straight chains can get closer together

OR branched chains cannot get as close to one another

IGNORE branched chain are more compact

Decane has more van der Waals' forces

OR branched chains have fewer van der Waals' forces ✓

ALLOW Decane has stronger van der Waals' forces

OR branched chains have weaker van der Waals' forces

More intermolecular forces is **not** sufficient

2

(iv) Branched chains have more efficient combustion
OR decane has less efficient combustion ✓

ALLOW branched chains are easier to burn
OR easier to combust
OR burn better
OR more efficient fuel
OR less likely to produce pre-ignition or knocking
OR increases octane rating
ALLOW ORA for decane
Better fuel is **NOT** sufficient
Burns more cleanly is **NOT** sufficient

1

[5]

Question: 2

3. The 'curly arrows' model is used in reaction mechanisms to show the movement of electron pairs during chemical reactions.

Choose a reaction mechanism that you have studied involving the curly arrow model.

Name and describe your chosen reaction mechanism.

In your answer, include:

- an example of the reaction with the chosen mechanism,
- the type of bond fission that occurs,
- relevant dipoles.

.....
.....
.....
.....
.....
.....
.....

[Total 6 marks]

3. EITHER

Nucleophilic substitution ✓

Example of nucleophilic substitution ✓

Heterolytic fission ✓

C—I curly arrow ✓

Correct dipole on C—I bond ✓

OH^- curly arrow from one lone pair on O of OH^- ion

OR from minus sign on OH^- ion ✓

OR

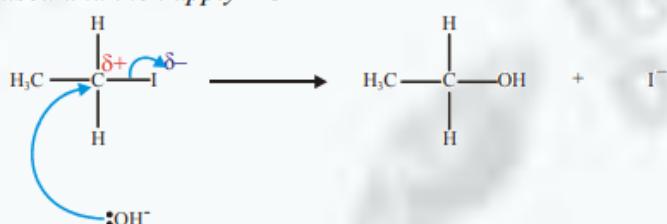
Electrophilic addition ✓

Example of electrophilic addition ✓

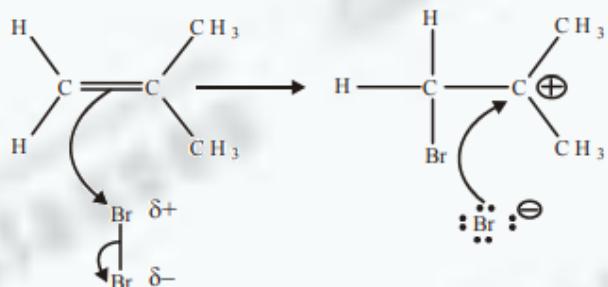
Heterolytic fission ✓

Curly arrow from C=C bond to Br—Br bond and

Dipole and curly arrow associated with Br_2 ✓


Correct carbocation ion ✓

Curly arrow from one lone pair on Br^- ion


OR from minus sign on Br^- ion ✓

The example mark can be awarded as an example of the name of the mechanism given or if the name is wrong can be given as an example of a reasonably correct drawn mechanism

If curly half arrows drawn do not give a mark the first time used and then apply ECF

ALLOW mechanisms for other halogenoalkanes

ALLOW mechanisms for other halogens and hydrogen halides

ALLOW

Electrophilic substitution ✓

Example of electrophilic substitution ✓

Heterolytic fission ✓

Curly arrow from benzene ring to the electrophile (i.e. NO_2^+ OR Br^+) ✓

Correct intermediate ✓

Curly arrow to show loss of hydrogen ion ✓

ALLOW

Nucleophilic addition ✓

Example of nucleophilic addition ✓

Heterolytic fission ✓

Correct dipole on carbonyl group ✓

Curly arrow from lone pair on H^- ion

OR from minus sign on H^- to $\text{C}=\text{O}$ carbon and breaking of $\text{C}=\text{O}$ bond ✓

Curly arrow from carbonyl oxygen to either H^+ or H_2O ✓

[6]

Question: 3

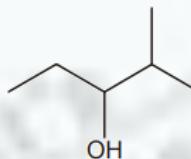
4. Draw the skeletal formula for 2-methylpentan-3-ol.

[Total 1 mark]

5. Butan-2-ol and 2-methylpropan-2-ol are structural isomers.

(i) What is meant by the term *structural isomer*?

.....
.....
.....


[1]

(ii) Draw another structural isomer of these two alcohols.

[1]

[Total 2 marks]

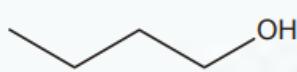
4.

✓
Formula must be skeletal AND not include any symbol except for OH

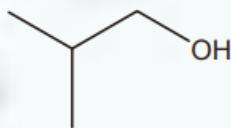
[1]

5. (i) Same **molecular** formula but different structural formulae ✓

ALLOW Same molecular formula but different arrangement of atoms

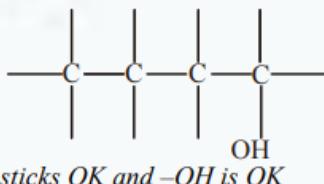

OR Same molecular formula but different structures

OR Same molecular formula but different displayed formulae


DO NOT ALLOW Same molecular formula but different spatial arrangement of atoms

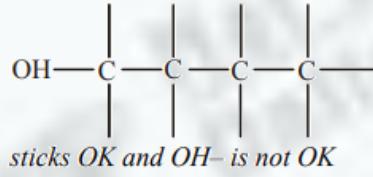
(ii) $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$ OR $(\text{CH}_3)_2\text{CHCH}_2\text{OH}$ ✓

ALLOW


OR

ALLOW displayed formula

ALLOW sticks (i.e. no H shown bonded to C)


ALLOW

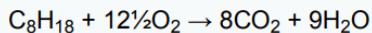
ALLOW correct ethers

DO NOT ALLOW

OH shown as below

sticks OK and OH- is not OK

1


[2]

Question: 4

6. Crude oil is a source of hydrocarbons which can be used as fuels or for processing into petrochemicals.

Octane, C_8H_{18} , is one of the alkanes present in petrol.

Carbon dioxide is formed during the complete combustion of octane.

What is the general formula for an alkane?

.....

[Total 1 mark]

7. Oil companies process hydrocarbons, such as octane, into branched and cyclic hydrocarbons that promote efficient combustion in petrol.

Draw the skeletal formulae of a branched hydrocarbon and a cyclic hydrocarbon, each containing eight carbon atoms.

[Total 2 marks]

6. C_nH_{2n+2} ✓

ALLOW $C_nH_{2(n+1)}$ ✓

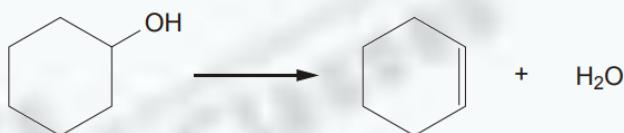
IGNORE size of subscripts

[1]

7. skeletal formula of a branched isomer of C_8H_{18} ✓

skeletal formula of a cyclic hydrocarbon **OR** skeletal formula of substituted arene of C_8H_{10} ✓

ALLOW any ring between C_3 and C_8 with 8 carbon atoms per molecule


IGNORE wrong names

If two correct structural or displayed formulae drawn award one mark

[2]

Question: 5

8. Alkenes can be prepared by the dehydration of alcohols with an acid catalyst. Cyclohexene can be prepared by the dehydration of cyclohexanol, shown below.

A student reacted 7.65 g of cyclohexanol, $C_6H_{12}O$, and obtained 0.0268 mol of cyclohexene.

(i) What is the molecular formula of cyclohexene?

.....

[1]

(ii) Calculate the percentage yield of cyclohexene.

answer = %

[3]

[Total 4 marks]

8. (i) C_6H_{10} ✓

1

(ii) M_r (cyclohexanol) = 100 ✓

amount of cyclohexanol = 0.0765 mol ✓

percentage yield = 35.0% ✓

ALLOW full marks for correct answer with no or limited working out

ALLOW ecf from wrong molar mass i.e. $7.65 \div \text{molar mass}$

ALLOW ecf from wrong amount in moles i.e. $[0.0268 \div \text{moles}] \times 100$

ALLOW 35%

ALLOW two marks for 0.35%

If M_r of 82 is used then % yield will be 28.7 or 29 and this is worth two marks

3

[4]

