

Electricity

Total mark – 16

Question: 1

1 (a) A student rubs a rubber balloon against the sleeve of her woollen jumper. The balloon becomes negatively charged.

1 (a) (i) Use the correct answer from the box to complete the sentence.

[1 mark]

electrons

neutrons

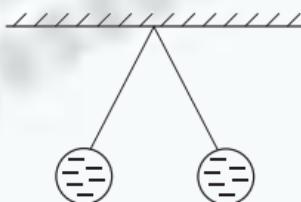
protons

The balloon becomes negatively charged because it gains _____ from the jumper.

1 (a) (ii) After charging the balloon, what is the overall charge left on the jumper?

[1 mark]

Tick (✓) one box.


negative

neutral

positive

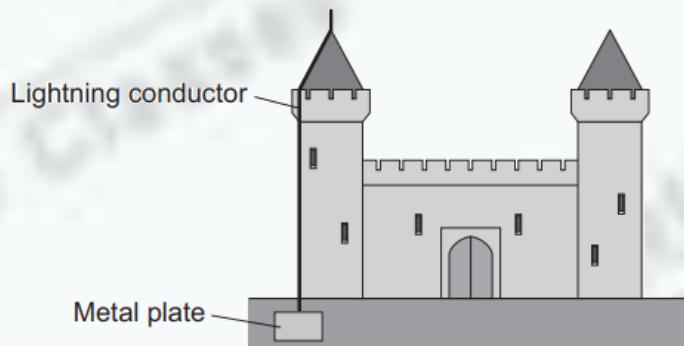
1 (b) Figure 1 shows two identically charged balloons hanging close together.

Figure 1

1 (b) (i) Complete the following sentence.

[1 mark]

The balloons carry the same type of charge and so _____ each other.


1 (b) (ii) From Figure 1, what can you conclude about the sizes of the **forces** acting on the balloons?

[1 mark]

1 (c) A lightning conductor attached to the outside of a building reduces the risk of damage being caused to the building by a lightning strike.

Figure 2

If the building is struck by lightning the electrical charge flows through the lightning conductor to earth.

1 (c) (i) Through which one of the following materials can electrical charge flow easily?

Draw a ring around the correct answer.

[1 mark]

copper

plastic

rubber

1 (c) (ii) What happens to the temperature of a lightning conductor when electrical charge flows through it? [1 mark]

Tick (✓) one box.

the temperature decreases

the temperature does not change

the temperature increases

1 (c) (iii) During a lightning strike, 4 coulombs of charge flow through a lightning conductor in 0.002 seconds.

Calculate the current in the lightning conductor.

Use the correct equation from the Physics Equations Sheet.

[2 marks]

Current = _____ A

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1(a)(i)	electrons		1	AO1 2.3.1b
1(a)(ii)	positive		1	AO1 2.3.1b
1(b)(i)	repel	accept a correct description eg push away from	1	AO1 2.3.1d
1(b)(ii)	(the forces are) equal (in magnitude)	accept in equilibrium accept balanced accept the same	1	AO3 2.3.1c
1(c)(i)	copper		1	AO1 2.3.1e
1(c)(ii)	the temperature increases		1	AO2 2.4.2a
1(c)(iii)	2000	allow 1 mark for correct substitution ie $I = \frac{4}{0.002}$ provided no subsequent step	2	AO2 2.3.2a
Total			8	

Question: 2

4 Figure 5 shows a radio. The radio can be powered by connecting the two-core cable to the mains electricity supply.

Figure 5

4 (a) (i) What must be fitted to the cable before it can be connected to the mains electricity supply?

[1 mark]

4 (a) (ii) There are only two wires inside the cable.
What are the names of the two wires inside the cable?

[1 mark]

Tick (✓) one box.

Earth and live

Earth and neutral

Live and neutral

4 (a) (iii) Use the correct answer from the box to complete the sentence.

[1 mark]

double

extra

fully

It is safe to connect the radio to the mains electricity supply using a two-core cable because the radio is insulated.

4 (b) The radio can also be powered by a battery.

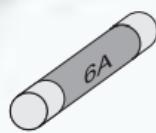
What type of current does a battery supply?

[1 mark]

Tick (✓) **one** box.

Alternating current (a.c.) only

Direct current (d.c.) only


Both a.c. and d.c.

4 (c) **Figure 6** shows a fuse and a circuit breaker.

Fuses and circuit breakers are able to disconnect and switch off circuits.

Figure 6

Fuse

Circuit breaker

4 (c) (i) Use the correct answer from the box to complete the sentence.

[1 mark]

earth

live

neutral

A fuse or a circuit breaker is connected to the wire in a circuit.

4 (c) (ii) What happens to cause a fuse or circuit breaker to disconnect a circuit?

[1 mark]

.....

4 (c) (iii) Suggest **two** advantages of using a circuit breaker to disconnect a circuit compared with using a fuse.

[2 marks]

1

.....

2

.....

4(a)(i)	(3-pin) <u>plug</u>	do not accept plug socket	1	AO1 2.4.1d	E
4(a)(ii)	live and neutral		1	AO1 2.4.1e	A
4(a)(iii)	double		1	AO1 2.4.1j	G
4(b)	Direct current (d.c.) only		1	AO1 2.4.1a	A
4(c)(i)	live		1	AO1 2.4.1g	G
4(c)(ii)	too great a current flows	accept a surge of current accept too great a power accept an electrical fault do not accept voltage / energy / electricity too high	1	AO1 2.4.1g	E
4(c)(iii)	can be reset (disconnects circuit) <u>faster</u>	accept does not need replacing cheaper is insufficient does not melt is insufficient quicker to fix / replace is insufficient	1 1	AO2 2.4	E
Total				8	