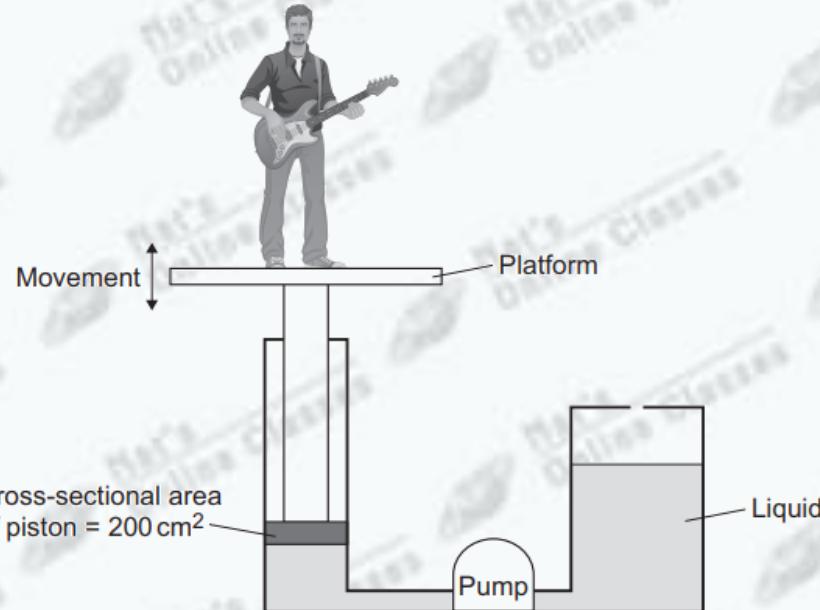


Pressure


Total Mark- 14

Question: 1

- 5 Musicians sometimes perform on a moving platform.

Figure 9 shows the parts of the lifting machine used to move the platform up and down.

Figure 9

- 5 (a) What name is given to a system that uses liquids to transmit forces?

Draw a ring around the correct answer.

[1 mark]

electromagnetic

hydraulic

ionising

- 5 (b) To move the platform upwards, the liquid must cause a force of 1800 N to act on the piston.

The cross-sectional area of the piston is 200 cm^2 .

Calculate the pressure in the liquid, in N/cm^2 , when the platform moves.

Use the correct equation from the Physics Equations Sheet.

[2 marks]

.....
.....
.....
Pressure = N/cm^2

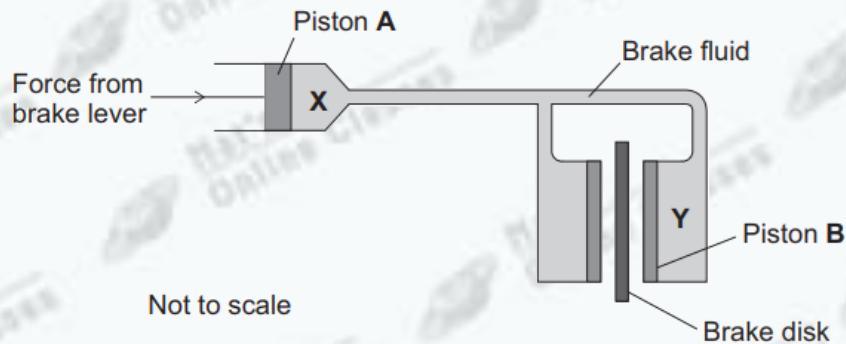
- 5 (c) A new development is to use oil from plants as the liquid in the machine.

Growing plants and extracting the oil requires **less energy** than producing the liquid usually used in the machine.

Draw a ring around the correct answer to complete the sentence.

[1 mark]

Using the oil from the plants gives an environmental
an ethical
a social advantage over the liquid


usually used.

Question	Answers	Extra information	Mark	AO spec ref
5(a)	hydraulic		1	AO1 3.2.3
5(b)	9	allow 1 mark for a correct substitution, ie $\frac{1800}{200}$ provided no subsequent step	2	AO2 3.2.3c
5(c)	an environmental		1	AO3 SALoSE
Total			4	

Question: 2

- 3 Figure 4 is a simplified diagram of a hydraulic brake system.

Figure 4

- 3 (a) Which is the correct statement about the pressure at X and the pressure at Y?
[1 mark]
Tick (✓) one box.

The pressure at X is greater than at Y

The pressure at X is the same as at Y

The pressure at X is less than at Y

- 3 (b) Piston **B** is larger than piston **A**.

How will this affect the size of the force on piston **B**?

Use the correct answer from the box to complete the sentence.

[1 mark]

smaller than

the same as

larger than

The force on piston **B** will be _____ the force on piston **A**.

- 3 (c) (i) A force of 24 N acts on piston **A**. The cross-sectional area of piston **A** is 8 mm².

Calculate the pressure in N/mm² at position **X**.

Use the correct equation from the Physics Equations Sheet.

[2 marks]

Pressure = _____ N/mm²

3 (c) (ii) The unit N/mm² is not often used to measure pressure.

Which unit is usually used to measure pressure?

[1 mark]

Tick (✓) one box.

newton

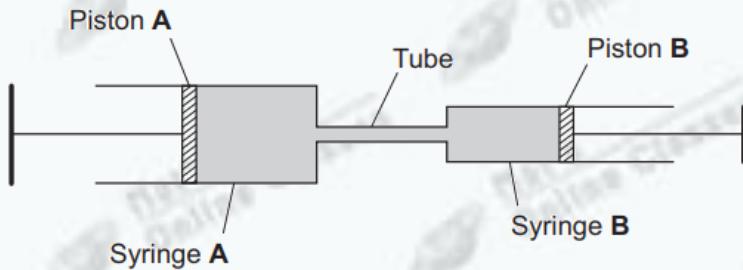
pascal

watt

3 (d) The liquid used in the hydraulic brake system freezes at -30 °C.

Suggest one effect a temperature below -30 °C would have on the brake system.

[1 mark]


Question	Answers	Extra information	Mark	AO / Spec. Ref.
3(a)	The pressure at X is the same as at Y		1	AO1 3.2.3a
3(b)	larger than		1	AO1 3.2.3b
3(c)(i)	3 (N/mm ²)	accept 3 000 000 Pa (correct unit must be given) allow 1 mark for correct substitution, ie $\frac{24}{8}$ provided no subsequent step	2	AO2 3.2.3c
3(c)(ii)	pascal		1	AO1 3.2.3c
3(d)	the brakes would not work	allow the vehicle (car/bike etc) would not stop accept they would freeze solid or seize up	1	AO3 3.2.3
Total			6	

Question: 3

- 3 A student made a hydraulic system using two syringes filled with water.

The syringes were joined with a tube, as shown in **Figure 4**.

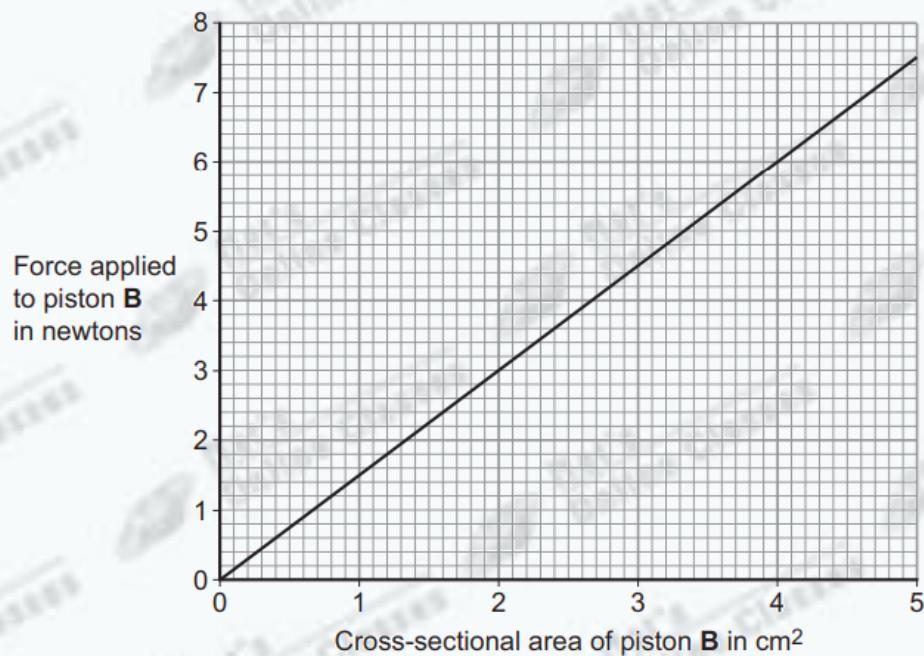
Figure 4

- 3 (a) What property of water makes it suitable to use in a hydraulic system?

[1 mark]

Tick (✓) one box.

It is almost incompressible.


It is a poor electrical conductor.

It is transparent.

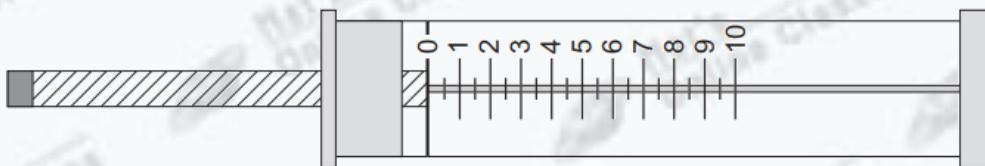
- 3 (b) The student investigated how changing the cross-sectional area of piston B affected the force needed to keep piston B moving at a constant rate.

The results are shown in **Figure 5**.

Figure 5

- 3 (b) (i) Describe the relationship between the cross-sectional area of piston B and the force applied to piston B shown in **Figure 5**.

[2 marks]



3 (b) (ii) The student used a newton-meter to measure the force applied to piston B.

The newton-meter is shown in **Figure 6**.

Figure 6

What is the smallest change in force that can be measured with this newton-meter?

[1 mark]

Tick (✓) **one** box.

0.1 N

0.5 N

1 N

Question	Answers	Extra information	Mark	AO / Spec. Ref.
3(a)	It is almost incompressible.		1	AO1 3.2.3a
3(b)(i)	The (cross-sectional) area is directly proportional to the force	accept for 1 mark when the area increases the force increases or the pattern is linear or a description using numbers positive correlation is insufficient	2	AO3 3.2.3c
3(b)(ii)	0.5 N		1	AO3 3.2.3b
Total			4	